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1. Executive Summary 

1. Perth urban stormwater is channelled by drainage networks into local receiving 

water bodies. These drainage networks often include constructed wetlands 

intended for remediation of high stormwater nutrient and/or metal/metalloid 

concentrations.  

2. Increased acidity and decreased pH associated with discharges from acid sulfate 

soils (ASS) may infiltrate stormwater drainage networks and impact constructed 

wetland water quality treatment processes. 

3. Calcite-based (CaCO3-based) pellets are produced during water purification at the 

Neerabup Groundwater Treatment Plant in Perth. Preliminary laboratory studies 

conducted by Water Corporation theorized these pellets were appropriate for 

neutralisation of acidic waters such as ASS discharges within stormwater drains. 

4. Delwaney Drain and Brushfield Wetland are part of a stormwater drainage 

network within City of Stirling that is impacted by ASS contamination. Delwaney 

Drain was modified by Water Corporation to contain calcite-based pellets to 

neutralise ASS-related acidity entering the drain. 

5. As discussed in CEM Report 2008-02, fieldwork at Delwaney Drain and 

Brushfield Wetland indicated that ASS contamination was present within 

Brushfield Wetland and the extent of contamination fluctuated dependent on the 

dominance of groundwater vs. stormwater influx. Sources of Brushfield Wetland 

acidity were likely Brushfield Wetland sediments and acidic groundwater inflow. 

The current application of calcite-based pellets in Delwaney Drain did not 

intercept highly ASS contaminated stormwater. Furthermore, physicochemical 

characteristics and ASS contamination indicators did not appear to vary between 

north and south sampling sites along the drain indicating insignificant water 

quality treatment prior to influx to Brushfield Wetland. 

6. Theoretical neutralisation capacity of Water Corporation calcite-based pellets was 

investigated in the laboratory through acid neutralising capacity (ANC) and loss-

on-ignition (LOI) analyses. ANC was conducted on both calcite-based and was 

8.9 ± 0.4% CaCO3. LOI results indicates calcite-based pellets had 17.1 ± 4.0% 

carbonate content. Such limited calcium carbonate content did not suggest the 
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calcite-based pellets would be a cost-effective acidity treatment strategy. If the 

maximum mean daily acidity from Brushfield Wetland occurred for the duration 

of that fieldwork, >6 times the volume of calcite-based pellets would have been 

required for acid neutralisation compared to pure calcium carbonate. Transport 

cost of calcite-based pellets may, therefore, outweigh the low material costs. 

7. Column trials were conducted to evaluate acid neutralisation using calcite-based 

pellets with ASS contaminated water. Columns investigated both the impact of 

aeration vs. nitrogenation (i.e., aerobic vs. aerobic environments) and induced 

surface turbulence vs. vertical flow (i.e. surface turbulence over relatively 

stagnant water vs. water columns encouraged to mix).  

8. Columns simulating surface water turbulence did not alter pH throughout the 10 d 

column study. Increases from pH < 3 to > 7 were observed in mixed columns 

irrespective of calcite-based pellet treatment or aeration/nitrogenation. These pH 

shifts were observed within approximately 2-4 days. Oxidation reduction potential 

(ORP) appeared to have an inverse relationship with pH in these columns. 

9. Initial column water quality was consistent with previous analyses of Spoonbill-

Shearwater Reserve. Neutralisation of acidity within mixed columns corresponded 

to decreased Al, Fe and NOx, and increased Cl:SO4 ratios. Water quality treatment 

was not observed in columns receiving solely surface turbulence.  

10. Increased Ca was observed in all mixing columns with approximately 5 mg L
-1

 

additional Ca in columns receiving calcite-based pellet treatment. As these 

columns all appeared to have increased pH, and increased Ca concentrations 

appeared relatively consistent (independent of calcite application), calcium 

carbonate dissolution was not likely responsible for acid neutralisation. 

11. Bacterial sulfate reduction was evidenced by the formation of monosulfide black 

ooze (MBO) within mixed columns. This sulfate reduction was likely largely 

responsible for increased pH. The addition of mulch to all columns provided 

sufficient labile carbon for bacterial activity. While pH and ORP conditions may 

not have been optimal initially, SRB activity has been shown to occur under low 

pH conditions. Mixing likely assisted sulfate reduction by moving contaminated 

water to these optimal zones and/or promoting the expansion of such zones into 

the water column. 
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12. Decreased NOx column concentrations may have also been related to bacterial 

activity as nitrate may be used as an electron acceptor within oxidizing conditions. 

Such nitrate reduction could have resulted in increased pH. 

13. Presence of calcite-based pellets and treatment with aeration/nitrogenation did not 

appear to affect water quality treatment. Rather, flow within the water column 

(mixing vs. stagnant) appeared to be the sole factor influencing water quality 

treatment and acid neutralisation. 

14. Calcite-based pellets produced by Water Corporation did not appear to be an 

effective material for neutralization of ASS discharges. Aluminium 

concentrations, however, appeared to be reduced with calcite-based pellet 

treatment. The use of the pellets for treatment of elevated Al concentrations could 

be researched further. 

15. Increased pH in Brushfield Wetland during winter, therefore, may be due not only 

to dilution by uncontaminated stormwater, but also due to mixing induced by 

stormwater flows entering the Wetland. Further, there may be potential for 

simultaneous treatment of ASS discharges and urban stormwater containing 

contaminants including nitrate if proper conditions are established within 

wetlands, potentially through mixing. 
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Frontispiece 

 

Delwaney Drain with calcite-based pellet application. 

 

This document should be referenced as follows. 

Sawyer, W. R. A., McCullough, C. D.; Lund, M. A. (2009). Calcite-based pellet 
neutralisation of acid sulfate soil within Delwaney Drain: laboratory 
studies. Centre for Ecosystem Management Report No. 2009-04, 
Edith Cowan University, Perth, Australia. 29 pp. 
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3. Background 

 

Delwaney Drain is part of an urban stormwater drainage network with City of 

Stirling. The Drain discharges to Brushfield Wetland, a stormwater treatment wetland, 

which subsequently discharges to Lake Gwelup. Urban development has led to 

oxidation of potential acid sulfate soils (PASS) in the area and subsequent 

acidification of wetlands. Increased acidity was first identified in Stirling in the early-

2000s (City of Stirling, 2006), which corresponds to a decrease in the Brushfield 

Wetland’s pH to approximately pH 4 (D. Rajah, City of Stirling, personal 

communication, 2007). 

As the area is known to be impacted by acid sulfate soil (ASS) discharges treatment 

strategies are necessary to consider. Development of low-cost materials and treatment 

strategies with minimal downstream environmental impacts is vital to treat areas 

affected by environmental acidification (Gómez del Río et al., 2004). Addition of 

acid-neutralising agents to acidic drainage is a common approach (Coulton et al., 

2003). One such material is calcite (CaCO3) which is typically used to adjust effluent 

pH to circumneutral, and optimize adsorption and precipitation of contaminants such 

as heavy metals (Sjöblom, 2003). Such techniques have been established with varying 

success or efficiency: 

 Lime used as a slurry can act to neutralise acidity stored within ASS affected 

sediments/soils (Indraratna et al., 2006).  

 Anoxic limestone drains generally work effectively to decrease acidity but the 

generation of hydroxide precipitates may decrease permeability of the drain 

and lead to system failure within as little as 6 months (Johnson & Hallberg, 

2005). 

 Treatment wetlands have become more efficient at treating acidic discharges 

following the inclusion of anoxic limestone drain systems in conjunction with 

existing wetlands (Kleinmann et al., 1998). 

Wilson et al. (1999) have indicated that the direct application of calcite or other 

liming products to soil or waterways has the potential to assist in mitigating 

acidification caused by ASS. The amount of calcite remaining within treatment 
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systems decreases as acid neutralisation occurs (Caraballo et al., 2007). Such 

strategies, therefore, typically require human intervention, large amounts of 

neutralising agent and are not always cost-effective (Johnson & Hallberg, 2005; Palko 

& Weppling, 1995; White et al., 1997). Further, large amounts of sludge that are 

typically produced require disposal (Johnson & Hallberg, 2005). 

Neutralisation of acidic waters from ASS occurs through the dissolution of calcite and 

its reaction with sulfuric acid resulting in decreased acid (H
+
) (equation [1]) (Czop et 

al., 2007). Following this dissolution process, significant quantities of sulfide minerals 

are often found within sediments or treatment substrates due to microbial sulfate 

reduction by sulfate-reducing bacteria (SRB) (Czop et al., 2007). It has been 

demonstrated that sulfate reduction occurs in conditions pH < 5 within alkaline micro-

environments (Koschorreck, 2008; Koschorreck et al., 2003; McCullough et al., 2008) 

despite Postgate’s (1984) assertion that low ecosystem pH was severely limiting to 

SRB activity. SRB also require a source of organic carbon and it is vital that this 

organic carbon source is effective and economical (McCullough et al., 2008). As a 

result treatment systems are often developed containing reactive mixtures including 

organic material and a neutralising agent (Caraballo et al., 2007). One potential 

organic material that is often readily available is green waste such as mulch. Large 

reductions in sulfate concentrations and acidity within AMD have been observed 

following mulch treatment, particularly when combined with additional organic 

material such as sewage sludge (McCullough et al., 2006; Waybrant et al., 1998). 

CaCO3 + 2H
+
 + 2

4SO    Ca
2+

 + H2CO3 + 2

4SO    [1] 

Calcite-based water quality treatment was established within Delwaney Drain by 

Water Corporation. This treatment strategy used calcite-based pellets produced during 

water purification processes with the aim of increasing alkalinity within stormwater 

prior to its discharge to Brushfield Wetland (Water Corporation, 2006). Field 

monitoring of the treatment application was unable to examine pellet efficacy due to 

limited continuous flow through Delwaney Drain and lack of acidity within influent 

stormwater (Sawyer et al., 2008). Therefore, laboratory analyses were required to 

examine ASS treatment efficacy with calcite-based pellets from Water Corporation. 

The pellets, already used for drinking water purification, were not pure calcium 
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carbonate as evidenced by their reddish colour. It remained unclear whether the 

pellets: 

 had acid neutralising potential, particularly due to previous armouring, and, 

 were appropriately placed in the Delwaney Drain to intercept ASS discharge 

(i.e., differences between flow-through and flow-over treatment strategies). 
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4. Methods 

Calcite-based pellets were collected from the Water Corporation Neerabup 

Groundwater Treatment Plant. Ten replicate acid neutralising capacity (ANC) 

titrations were conducted for the calcite pellets following Ahern et al. (2004)’s Acid 

Reacted and Back-Titration method (19A2) (recorded results were taken as the mean 

of 3 titrations with results within 1% error).  

Loss-on-ignition was determined using 40 g samples following drying at 105
o
C for 

24 h and then burning at 550
o
C for 12 h to estimate organic carbon content. Carbonate 

content was then determined based on further weight loss following burning at 950
o
C 

for 12 h. 

Laboratory column trials were conducted with 120 mm diameter, 600 mm long clear 

acrylic cores. The cores were plugged with rubber stoppers on the bottom and plastic 

lids allowing an input gas tube and small output vent capped the tops, and were 

contained within 50 L tubs filled with water to minimize pressure that may have 

caused leaks. Temperature was kept constant at 25
o
C throughout the trials and plastic 

tarps were used to limit direct sun. Columns received 100 g of mulch from the 

experimental ASS discharge treatment system at Spoonbill-Shearwater Reserve in 

City of Stirling as an organic carbon source as per Harmsworth et al. (2008). Mulch 

was added to the columns following the addition of water and calcite as appropriate 

for the treatments. As water from Delwaney Drain was not found to be acidic, acidic 

ASS contaminated water was collected from Spoonbill-Shearwater Reserve to 

compliment the source of mulch and previous ASS treatment research within City of 

Stirling. An apparatus was constructed using plastic disks which were perforated with 

a drill and 20 mm PVC tubing which was placed in the bottom of each core (Figure 

1). Twelve columns were aerated to promote aerobic conditions while twelve columns 

were nitrogenated to promote anaerobic conditions. Within these treatments, six 

columns received gas through a hose at the bottom of the columns under the 

perforated disk to promote flow throughout the column, mixing and flow through 

calcite-based pellets if appropriate. The remaining six columns in each of the 

respective gas treatments received gas bubbles at the surface to simulate surface 

turbulence on a relatively stagnant drain or wetland. Finally half of these columns 

within each of these four treatments received 200 g of calcite-based pellets while the 
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remainder was untreated. In total there were eight treatments accounting for the 

presence of calcite-based pellets, aerobic vs. anaerobic conditions and water flow 

(stagnant vs. mixing). Acronyms used for identifying the columns are given in Table 

1. 

Table 1: Column descriptions and acronyms. 

Column Acronym Column Description 

OBT Aeration, Mixing 

OBTC Aeration, Mixing, Calcite-Based Pellets 

NBT Nitrogenation, Mixing 

NBTC Nitrogenation, Mixing, Calcite-Based 

Pellets 

OBO Aeration, Surface Turbulence 

OBOC Aeration, Surface Turbulence, Calcite-

Based Pellets 

NBO Nitrogenation, Surface Turbulence 

NBOC Nitrogenation, Surface Turbulence, 

Calcite-Based Pellets 

 

Physicochemical factors including pH, EC, ORP, DO and T were monitored daily at 

approximately 10:00 h using YSI 600XLM multiparameter sondes (YSI, USA). Water 

samples from each core prior to and after the trials were analysed for dissolved 

organic carbon (DOC), chloride (Cl
-
), sulfate ( 2

4SO ), calcium (Ca), iron (Fe), 

aluminum (Al), nitrate/nitrite (NOx), ammonium (NH4) and filterable reactive 

phosphorus (FRP). 
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Figure 1: Apparatus at bottom of calcite trial cores. 

 

  



CALCITE-BASED PELLETS FOR ACID SULFATE SOIL DISCHARGE NEUTRALISATION WITHIN DELWANEY DRAIN 

 Page 14 of 29 pages 

5. Results & Discussion 

Physicochemical conditions only changed within columns simulating mixing, in 

which water quality improvements were observed within approximately 2-4 days. 

Increased pH was observed from pH <3 to >7 (Figure 2). The NBT treatment did have 

some affect on pH, however not to the extent of the other mixed columns with a 

maximum pH of 4.5 reached throughout the study. A slight inverse pH vs. ORP 

reaction occurred with ORP declining as pH increased. 

 

a)  b)  

c)  d)  

Figure 2: Mean pH and ORP data for column treatments OBT (a), OBTC (b), NBT (c) and NBTC (d). 

 

DO concentrations in the mixed columns increased to near 100% within aerated 

columns, and < 20% within nitrogenated columns. Mulch treatment appeared to 

enhance the generation of anoxic conditions within nitrogenated columns, but did not 

limit aerobic conditions caused by aeration.  

Similar to pH, chemical analyses of initial and final water samples indicated water 

quality treatment for various contaminants occurred solely within mixing columns. Al 

concentrations decreased in all mixed columns except NBOC (Figure 3). Initial mean 

Al concentration across the columns was 0.74 ± 0.01 mg L
-1

. Concentrations of Al 

decreased to mean 0.22 ± 0.12 mg L
-1

 (70% decrease) within mixed columns while 

decreasing by only 20% in columns simulating surface turbulence.  
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Fe concentrations decreased similarly to Al in all columns except NBOC (Figure 4). 

At onset of experimentation the columns had mean Fe concentration of 

25.1 ± 0.6 mg L
-1

. Mean Fe concentrations decreased within surface turbulence 

columns by a maximum of approximately 4 mg L
-1

 (3%) while Fe reductions between 

10-15 mg L
-1

 ( approximately 48%) occurred in mixed columns.  

 

 
Figure 3: Initial (black) and final (white) Al concentrations from calcite-based pellet trials. 

 

 
Figure 4: Initial (black) and final (white) Fe concentrations from calcite-based pellet trials. 
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Calcium concentration changes appeared independent of treatment. Mean initial Ca 

concentration within the columns was 50.6 ± 0.5 mg L
-1

. Final mean Ca concentration 

was 52.2 ± 1.4 mg L
-1

.  

Sulfate had an initial mean concentration of 44.46 ± 0.62 mg L
-1

 (Figure 5). Surface 

turbulence columns had a mean 17% decrease in sulfate concentration. Substantially 

higher decreased sulfate concentrations (46% to 24.6 ± 1.1 mg L
-1

) occurred within 

mixed columns. Chloride concentrations had similar responses in both flow 

treatments. Concentration decreases of 12% and 13% occurred in the surface 

turbulence and mixed columns respectively The mean initial chloride:sulfate (Cl:SO4) 

ratio was 0.77 ± 0.02 (Figure 6). Within surface turbulence columns this ratio 

increased by an approximate mean of 6% while it increased by a mean 39% in mixed 

columns. 

 

 
 

Figure 5: Initial (black) and final (white) sulfate concentrations from calcite-based pellet trials. 
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Figure 6: Initial (black) and final (white) Cl:SO4 ratios from calcite-based pellet trials. 
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DOC had mean initial concentration of 2.2 ± 0.10 mg L
-1

 (Figure 7). Concentrations 

of DOC increased irrespective of flow method (surface or mixed). Surface turbulence 

columns had a mean 29% increase and mixed columns had a 32% increase. DOC 

increases were likely caused by mulch additions. 

 

 
Figure 7: Initial (black) and final (white) DOC concentrations from calcite-based pellet trials. 
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Figure 8: Mean percent decrease of Al and Fe concentrations within flow through columns containing 

calcite-based pellets (black) and without calcite-based pellets (white). 
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likely calcium carbonate dissolution was not responsible for decreased acidity or 

minor Ca concentration fluctuations within the columns.  

CaCO3 + 2H
+
 + 2

4SO    Ca
2+

 + H2CO3 + 2

4SO    [2] 

Alkalinity generation and increased pH, therefore, were likely caused by bacterial 

activity rather than calcite-based pellet chemical neutralisation. Such sulfate-reducing 

bacterial activity is primarily limited by the availability of labile organic carbon as 

acidic drainage typically has low DOC concentrations and SRB are particularly 

sensitive to organic carbon concentrations (Kolmert & Johnson, 2001; Liu et al., 

2003; Neculita et al., 2007; Zagury et al., 2006). The addition of mulch likely 

provided the required organic carbon as DOC increases were consistently observed 

throughout the columns. 

Bacterial sulfate reduction produces hydrogen sulfide (H2S) as described by equation 

[3], which can then be transformed into sulfide minerals (Lucassen et al., 2002). 

Sulfate reduction and sulfide mineral formation was evidenced by the formation of 

monosulfide black ooze (MBO) at the bottom of mixed columns. MBO forms in 

drains with readily available labile carbon and reducing conditions (Fitzpatrick et al., 

2005). Labile carbon was available due to increasing DOC in all columns, however, 

ORP was primarily oxidizing with a minimum of >150 mV. SRB activity has been 

thought to occur primarily within conditions with ORP < -100 mV and is inhibited by 

high ORP (Postgate, 1984). Similar to SRB activity that has been shown within low 

pH conditions (Koschorreck, 2008; Koschorreck et al., 2003; McCullough et al., 

2008), which was previously considered extremely limiting (Postgate, 1984), reducing 

microenvironments have been observed leading to sulfate-reduction in localized zones 

within overall oxidizing environments (Brown et al., 1999; Jørgensen & Bak, 1991; 

Reisman et al., 2003). Reducing zones may, therefore, have allowed stable SRB 

activity and MBO formation within the generally oxidizing water columns (Reisman 

et al., 2003; Zaluski et al., 2003).  

2CH2O + 2

4SO    2



HCO3
  + H2S        [3] 

The formation of MBO through such processes, however, is not an effective method 

of treating ASS discharge within stormwater drainage. MBO may be re-oxidized 

releasing acidity and leading to severe deoxygenation of water bodies within flowing 
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drains (Sullivan et al., 2002). Upon drying of open drains, such as occurred regularly 

within Delwaney Drain, MBO has the potential to rapidly oxidize and lead to 

acidification upon re-wetting (as observed for Brushfield Wetland sediments) 

(Fitzpatrick et al., 2005). It is vital that such a by-product of ASS neutralisation be 

contained within the treatment system to avoid negative downstream effects within 

natural environments. Additionally, additional decreases in sulfate concentrations may 

have related to decreased Al concentrations and the formation of aqueous aluminium-

sulfate complexes, however, such complexes are readily soluble and not a viable 

treatment option (Rose & Ghazi, 1998). 

Bacterial activity and ORP also were likely key factors in decreasing nitrate 

concentrations within the columns. SRB within oxidizing conditions may decrease 

NOx concentrations. Nitrate may be used by SRB as an electron acceptor for 

respiration within oxidizing conditions, producing ammonium (Boopathy et al., 2002; 

McCready et al., 1983). Nitrate reduction, therefore, may also be used within 

treatment systems to promote increased pH through the use of hydrogen ions and 

production of hydroxide ions as per equation [4] (Till et al., 1998). Low observed 

ammonium production may have resulted from a lack of sediments typically required 

for this process (Faulkner & Richardson, 1989). Further, mixing of wetland water is 

known to volatize ammonium leading to decreased aqueous concentrations (Kadlec & 

Knight, 1996). Nitrification of ammonium, however, is necessary to consider for 

water quality as all samples had concentrations in excess of the guideline value 

(ANZECC/ARMCANZ, 2000). Overall, mixing appeared to increase the production 

of ammonium and decrease nitrate concentrations. Such nitrate reduction 

corresponded to increased pH and may indicate potential use of nitrate reduction for 

remediation of ASS discharges. 

2 

3NO  + 5H2   N2 + 4H2O + 2OH
-
       [4] 

Water quality improvements and acid neutralisation, therefore, appeared to be due 

sulfate reduction by SRB with sufficient labile organic carbon due to mulch addition 

and the presence of consistent mixing throughout the water column promoting ideal 

conditions within micro-environments. 
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6. Conclusions 

 

There is potential for acid neutralizing material to be placed within input or output 

drains of existing ASS contaminated urban stormwater treatment constructed 

wetlands to promote ASS treatment of contaminated water within stormwater 

drainage networks prior to discharge into receiving environments. However, the 

calcite-based by-products from Water Corporation appeared to have relatively low 

carbonate content and consequent neutralising capacity. Further, laboratory trials of 

the pellets demonstrated that calcite-based pellets produced during water purification 

processes did not inhibit or enhance treatment of either acidity, iron or sulfate. As 

such the pellets were likely unsuitable for the proposed treatment strategy at 

Delwaney Drain and Brushfield Wetland or elsewhere. 

Cost-effectiveness would also be a vital consideration for environmental managers if 

alternative calcite-based pellet applications were investigated and found to assist in 

acidic water quality treatment. Approximately 11-12 units of Water Corporation 

calcite-base pellets would be required for every 1 unit of pure calcium carbonate, 

since the pellets had mean ANC = 8.9% CaCO3 equivalent. Within Brushfield 

Wetland maximum acidity detected was 22 mg CaCO3 L
-1

. Should this have been the 

constant acidity over the entire study period total effluent acidity from the Wetland 

would have been approximately 555 kg CaCO3 (based on the calculated 25,250,000 L 

outflow). Therefore, approximately 6,110-6,666 kg of Water Corporation calcite-

based pellets would have been required over 5 months. Assuming pure calcium 

carbonate or lime to have an approximate cost of $50/tonne (as per Bruce et al., 2000) 

the required 0.5 tonnes of pure reactive materials could be used for low cost (<$50 

outside of transport costs). Alternatively free calcite-based pellets may have large 

transport costs due to the large required volume (>6 tonnes). 

The primary factor impacting water quality treatment was movement of water 

throughout the water column. As discussed, SRB activity appeared to occur within 

non-ideal environments including acidic waters with isolated alkaline 

microenvironments (Koschorreck et al., 2003; Praharaj & Fortin, 2004) and localized 

reducing zones in oxidizing conditions (Kolmert & Johnson, 2001; Reisman et al., 

2003; Zaluski et al., 2003). Moreover, nitrate reduction may have assisted in 



CALCITE-BASED PELLETS FOR ACID SULFATE SOIL DISCHARGE NEUTRALISATION WITHIN DELWANEY DRAIN 

 Page 23 of 29 pages 

increasing pH (Till et al., 1998). It is, therefore, postulated that synthesized mixing 

may assist acidic water quality treatment within stormwater drainage networks and 

treatment wetlands by: 

 forcing expansion of alkaline and/or reducing microenvironments with active 

SRB throughout the water column, and/or, 

 causing sulfate to contact microenvironments with optimal conditions for SRB 

activity leading to treatment of ASS affected water, and/or, 

 causing nitrate to contact microenvironments with optimal nitrate reducing 

conditions that are known to increase pH (Till et al., 1998). 

Acidity treatment, therefore, may be enhanced compared to stagnant water bodies in 

which these microenvironments remain isolated. This supports Kadlec’s (1994) 

assertion that water movement throughout constructed wetlands is vital for water 

quality treatment and mixing may be a key component as have been found for various 

contaminants. Calcite-based pellets produced by Water Corporation during water 

purification, however, did not appear to assist in neutralization of acidity associated 

with ASS discharges. 
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7. Recommended Future Work 

 

1. Investigations into strategies for encouraging mixing within stormwater drainage 

networks and treatment wetlands may enhance acid sulfate soil (ASS) discharge 

water quality treatment. Moreover the extent of mixing within the water column 

may have optimal limits or ranges that require examination. 

2.  If inexpensive options could be established to de-armour calcite-based pellets 

from Water Corporation, research would be required to determine if the “clean” 

pellets were appropriate for ASS neutralisation. Alternatively, as the pellets did not 

appear to adversely impact water quality there may be potential for use as a 

substrate in a different application. For example, treatment of elevated Al 

concentrations may be possible with the pellets. However, this theory requires 

further research as this study do not quantify long-term effects of the pellets and/or 

long-term armouring potential.  

3. It seemed clear water flowing over reactive media rather than mixing through 

reactive media was not effectively treated for acidity and ASS contamination. 

Strategies for stormwater drainage network ASS treatment should, therefore, focus 

on permeable reactive media. For example, reactive barriers within stormwater 

infrastructures such as the drain discharging to Brushfield Wetland. 

4. Monosulfide black ooze (MBO) formed during acidity treatment and upon drying 

of environments such as wetlands and drains would have become a source of 

acidity. Strategies to contain MBO and/or remove MBO following water treatment 

should be investigated. This may also be necessary if large quantities of iron 

sulfide minerals are produced and oxidized within dried environments. 

5. It appeared urban stormwater contaminated by nitrate and intercepting ASS 

discharges may potentially be treated simultaneously within mixed water columns. 

Further research may provide insight into combined treatment of such 

contaminants within coastal urban environments. 
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