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Phosphorus removal from storm water by biofilms (periphyton) m 
constructed wetland systems, Western Australia 

S. A. Hawkins, M. A. Lund and P. S. Lavery 

lntroduction 

The ability of natural wedands to provide effective 
nutrient sinks for organic and inorganic pollurants 
and to absorb new nutrient loadings has been well 
documented (KADLEC 1997, LANTZKE et al. 1999). 
Constructed wedand sysrems (CWSs) operate by 
optimising rhe nutrient removal characteristics of 
natural wedands, thereby aiming to achieve higher 
removal rates than in natural wedands. While the 
nutrient removal potential of CWSs is well docu­
mented, the laek of knowledge o n filterable reactive 
phosphorus (FRP) removal mechanisms has ham­
pered their wider use (LANTZKE er al. 1999). Under­
standing of the interna! wedand mechanisms has 
typically relied o n CWS conceprual models of phos­
phorus removal. 

Conceprual models of phosphorus removal for 
stormwater CWSs have been developed by KADLEC 

(1997), MouSTAFA (1997), DLWC (1998) and 
LANTZKE er al. (1999), with a similar number of 
models developed for wastewater CWSs (see BuTCH­
BERGER & SHAW 1995). By estimating phosphorus 
removal by soils, vegetation and microbial commu­
nities (biofilms) over time, in relation to cumulative 
phosphorus removal, rhese models have been devel­
oped as a baseline too! for CWS design. The DLWC 
( 1998) model suggests that in the long-term, rhe 
greatest proportion of phosphorus is removed by 
biofilm development, peat accretion and filtrarion. 
The presem study aimed to quantify phosphorus 
removal of the biofilm component, by assessing the 
FRP removal rates of biofilms obtained from an 
established stormwater CWS. 

Methods 

Study site 
The Hammond Road Experimental Wedands sys­
tem, located 22 km south of Perrh, began operation 
in March 1998 and consists of rhree individual wet­
land ponds (15 x 5 x 1.5 m' (length x width x maxi­
mum depth)) rhat each receive influent storm water 
(see LuND et al. 2000). Biofilms were collected on 

vertically hung glass panes (200 x l 00 m m' (length x 
width)) resring on the sediment. The panes were 
hung vertically to minimise any sedimentation that 
could smorher the biofilm matrix (APHA 1995). 

Biofilm biomass within rhe system was estimated 
using randomly located panes in open water and 
vegetated habitats for a 2-week period, as per APHA 
(1995), sampled monthly berween October and Jan­
uary 1999-2000. Biofilms used for the FRP uprake 
experiments were collected from randomly located 
panes in the open warer habitats left for 6 weeks in 
order ro maximise biomass. During transit to rhe 
laboratory, the samples were submerged in dark, 
sealed containers comaining water from the system. 

Laboratory procedure 
Filterable reactive phosphorus uptake was deter­
mined from a batch-culture experiment in glass 
chromatography tanks (cells), where FRP uptake was 
calculated as the loss of FRP from the surrounding 
water, standardised to the water volume and the bio­
film biomass. Five FRP concentrations ( <50, 50, 
100, 200 and 400 jlg L-'), each wirh five replicate 
cells, were used to determine phosphorus uptake. 
The selected concemrations aimed to encompass the 
variability of FRP concentrations found in natural 
systems on rhe Swan Coasral Plain by DAVIS er al. 
(1993). A single 10-mL water sample was extracted 
from each replicate cell at O, 5, 10, 20, 35, 55, 85 
and 120 min to determine FRP loss from the water 
column. The first sample (O min) was taken 3 min 
after the panes were inserred, in order to avoid 
recording any initially high uptake as a result of con­
cemration change. 

The FRP concemration of each sample was deter­
mined by the ascorbic acid method as per APHA 
(1995), with the exrracted samples filtered rhrough 
0.45-jlm GFC filter paper to remove parriculate 
matter. Four-cm path-length cuvettes were used to 
reduce analytical error to wirhin 3 jlg L-'. The crite­
rion for assessing a significant result was therefore 
idemified as uprake >3 jlg L·'. The FRP uptake rate 
for each concentration was calculared as rhe mean 
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slope of regression for each cell. The uptake rate for 
each concentration was standardised to the mean 
biofilm organic biomass at each concemration, with 
the biofilm biomass in each cell determined as per 
APHA (1995). 

Each tank contained four panes separated into 
pairs by plastic dividers (Fig. l). A water pump was 
installed in each tank to reduce boundary layer for­
mation by circulating the FRP solution evenly 
around the biofilms. Dye tests confirmed that the 
cells were fully circulated within 5 s (HAWKINS 
2000). Each tank was filled to a total volume of2 L, 
containing the appropriate volumes of FRP and 
Bold's Basa! Medium (BBM), and then topped with 
wetland water to reach the desired volume. The wet­
land water was obtained from Loch McNess (SO km 
north ofPerth) because of consistently low FRP con­
centrations at -2 flg L-' (SoMMER & HoRWITZ 1999). 
The FRP stock solution was made using a combina­
tion of dipotassium hydrogen-orthophosphate 
(K,HPO,) and potassium dihydrogen-orthophos­
phate (KH,PO) as per BISCCHOFF & Bow (1963, 
cited in Bow & WYNNE 1978), POLPRASERT et al. 
{1998) and PASTORELLI et al. {1999), with the relative 
proportions based on BISCCHOFF & Bow {1963, 
cited in BoLD & WYNNE 1978). Bold's Basal 
Medium (BISCCHOH & Bow 1963, cited in Bow & 
WYNNE 1978) was added as a nutrient supplement to 
ensure that the FRP uptake by the biofilms was not 
nutrient limited. Sodium chloride was excluded 
from the medium to prevent the water from becom­
ing brackish. Phosphorus was also excluded, as rhis 
was the experimental nutrient. 

Photosymhetically active radiation (PAR) was pro­
vided at 3.4 flmol m ' s-'. For operator safety in dark-

Fig. l. FRP uptake tank design. Side and end views 
of the uptake tanks are shown in order to show the 
water pump and the division between plates that 
helped water circulation around and between the 
p la tes. 

ness, this was as dose as practicable to the 0.2-flmol 
m-2 ç' PAR intensity measured at the sediment sur­
face in the Hammond Road Experimemal Wetlands. 

Results and discussion 

The maximum potential FRP uptake by bio­
film was ~1.67 Jlg mg-1 h-1 at an FRP concen­
tration of 400 Jlg L-1 (Fig. 2, Table 1). When 
this rate was extrapolated using the biofilm bio­
mass data from the Hammond Road wedands, 
the FRP uptake rates were estimated at 16.6 Jlg 
m-' h-1 and 29.9 Jlg m-' h-1 in the open water 
and vegetated habitats, respectively (Table 2). 

On a weekly basis this would equate to 
2.8-5.0 mg m-' week-t, similar to that recorded 
by MITSCH et al. (1995), who estimated the 
FRP uptake by biofilms (combined with water­
column uptake) at 4-6 mg m-' week1 from a 
stormwater CWS on freshwater riparian 
marshes in Illinois (US). CRONK & MITSCH 

(1994) estimated biofilm FRP uptake to be 
slighdy lower, at 1-3 mg m-' week-t, for the 
same system. Despite the emphasis given to the 
maximum potential FRP uptake rate, it must 
also be considered that FRP uptake by biofilm 
may be negligible at low concentrations. Three 
of the concentrations in the FRP uptake experi­
ments did not indicate FRP removal, and one 
concentration indicated a low FRP export. 
Therefore, given that the rate o f uptake is con­
centration dependent (KADLEC 1997), FRP 
uptake at low concentrations may be negligible. 
lt must also be considered that the biofilms 
used for the FRP uptake experiments may also 
have been FRP saturated prior to the com­
mencement of the FRP uptake experiments, 
indicating that the potential FRP uptake rates 
may actually be higher than reported. 

The FRP uptake rates obtained by MITSCH et 
al. (1995) and CRONK & MITSCH (1994) were 
similar to the FRP uptake rates found in the 
present study. However, in contrast, the biofilm 
biomass in this study was found to be lower, 
5-9 mg m-' week-' compared to 0.5-2.5 g m-' 
week-' recorded by CRONK & MITSCH (1994), 
indicating that the potential uptake rate per 
gram ofbiofilm was found to be higher (no pre­
viously published data were available for com­
parison with Australian biofilm FRP uptake 
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Fig. 2. FRP uptake kinetics ofbiofilm at five concentrations. The regression shown is rhe mean regression of 
all tanks in the given concenrration. Two concentrations recorded uptakes rhat met rhe significance criteria. 
The remaining three concenrrations did nor meer rhe significance criterion (marked by NS). The 400-flg L-1 

concentration had an FRP uptake, while the 100-flg L-' concenrration hada net FRP export (±SE, n; 5, *n 
; 4). 

Table l. Mean FRP uptake standardised to concenrrarion biomass. The highest concentration had the high­
esr.FRP uptake rate standardised to biomass. NS indicates where the FRP uptake was nor significanr. FRP 
uptake occurred at the highest concentration (400 flg L-') at a rate of 14.56 flg h-' (Fig. 2), 1.67 flg mg-' h-' 
when rhis rate was standardised to the mean tank biomass for the concenrration. FRP export recorded in the 
l 00-flg L-' concentration had an export of 6.66 flg h-', 0.20 flg mg-' h-' when standardised to the mean tank 
biomass. 

FRP concentration Mean tank uptake rate Mean organic biomass FRP uptake rate 
(flg h-') (mg) (flg mg-' organic biomass h-') 

400 flg L-' 14.56 8.7 1.67 

200 flg L-' NS NS 

100 flg L-' -6.66 33.8 -0.20 

50 flgL-' NS NS 

<50 flg L-' NS NS 

Table 2. The mean organic biofilm biomass and the extrapolated FRP uptake rates for open water and vege­
tated habitats in rhe Hammond Road Experimental Wetlands. The organic biomasses recorded for rhe open 
water and vegetated habitats were combined with the maximum FRP uptake rate, the extrapolated FRP 
uptake rates were shown to be 16.6 flg m-' h-' and 29.9 flg m-' h-' for the open water and vegetated habitats, 
respectively. The vegetated habitat had a greater mean organic biofilm biomass, rhus resulting in a higher 
extrapolated FRP uptake rate. 

Habitat type 

Open water 

Vegetated 

Mean organic biofilm biomass 
(mg m-' week') 

5.05 (n; 12) 

8.95 (n= 12) 

Extrapolated FRP uptake rate 
(flgm-' h-') 

16.6 

29.9 
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rates). 
In relation to CWS conceptual model mecha­

nisms, M1TSCH et al. (1995) concluded that 
most influent phosphorus was retained through 
sedimentation and by macrophytes, with a 
lesser amount removed by biofilms. In contrast 
to this, higher potential biofilm FRP uptake 
and the diminished role of sedimentation on 
the Swan Coastal Plain (due to low particulate 
composition (DOUGLAS 1993, cited in WRC, 
1997)) indicate that long-term phosphorus 
removal by biofilms may be highly significant if 
sufficient biomass is available. 

In order to significandy increase FRP removal 
from CWSs in Western Australia, design crite­
ria and wedand management must focus on 
mechanisms for maximising biofilm biomass. 
The higher biofilm organic biomass in the vege­
tated habitat may also indicate that maximising 
FRP removal from a system could be achieved 
by optimising the area of vegetated habitat. 
Additionally, the vegetated habitat would pro­
vide an increased area for biofilm development, 
and thus improve FRP removal. 
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